Описание работы основной платы кв-трансивера. Схема КВ-трансивера с SSB-модуляцией Кликние для увиличения

Внимание! Информация ниже представлена для ознакомления. Не для коммерческого использования! Переработка данного материала без согласия автора и соавторов считается нарушением авторских прав. На этой странице представлены этапы процесса разработки трансиверов URD-012 и URD-016 digi . Отдельная благодарность Першину Анатолию (RV3AE) и Красноперову Олегу (UR6EJ) за идеи и наработки в области схемотехники. Обсуждение на форуме по ссылке . URD-016 digi — КВ-трансивер со встроенным одноплатным компьютером (планируется в 2016 году) или упрощённая версия без встроенного ПК — URD-012 . Предназначается для работы традиционными и цифровыми видами связи. Одно преобразование с ПЧ 6.000 мГц. Все КВ диапазоны. Виды модуляции SSB и CW. Возможность работы цифровыми видами связи с использованием цветного TFT дисплея с тачскрином, встроенного компьютера, возможность вывода панорамы на дисплей, второй приёмник по схемотехнике RTL- SDR (версия URD-016 digi ).
На сегодняшний день возможно изготовление только варианта трансивера URD-012.

Краткое руководство по эксплуатации URD-012

Текущая версия прошивки


Основные параметры URD-012:
— виды модуляции SSB, CW, цифровые виды (с использованием САТ интерфейса);
— диапазоны 160, 80, 40, 30, 20, 17, 15, 12, 10 метров;
— чувствительность приёмника: 0.25 мкв (Preamp off), лучше 0.2 мкв (Preamp on)
— предусилитель ВЧ 20 dB;
— аттенюатор 18 dB;
— динамический диапазон DR IMD3: 102 dB (разнос 20 кГц, полоса 2.7 кГц);
105 dB (разнос 20 кГц, полоса 0.5 кГц);
— подавление зеркального канала не хуже 70 dB;
— подавление несущей не менее 60 dB;
— усреднённая мощность по диапазонам до 30 ватт, с плавной регулировкой;
— мощность УНЧ 2.3 ватта;
— в тракте микрофонного усилителя возможна установка компрессор сигнала (опция);
— CAT интерфейс (работа цифровыми видами с использованием компьютера, возможность самостоятельного обновления прошивки синтезатора);
— выход ПЧ (6 мГц) для подключения панорамы;
— система АРУ по ПЧ и ручная регулировка усиления;
— система IF SHIFT (+/- 1000 Гц)
— NOTCH фильтр;
— электронный телеграфный ключ (опция) с поддержкой ямбического режима, запоминанием последнего знака и регулировкой скорости;
— переключаемые кварцевые фильтры основной селекции SSB, CW;
— переключаемые подчисточные фильтры SSB, CW;
— отельный кварцевый фильтр SSB в режиме передачи;
— питание 13.8 вольт;
— потребляемый ток в режиме приёма 700 мА;
— потребляемый ток в режиме передачи 8 — 10 А (max.);
— габариты 250 х 95 х 260 мм.

Блок-схема трансивера

Принципиальная схема основного тракта приёма-передачи, АРУ и балансного модулятора (схема может иметь некоторые расхождения с текущей версией)

Рабочий вариант пластиковой лицевой панели URD-012 с нанесённой шелкографией

Приёмо-передающий тракт выполнен в виде основной платы, на которой устанавливаются съёмные модули АРУ, микрофонного усилителя МУ, балансного модулятора БМ, платы стабилизаторов. Все кварцевые фильтры, как основной селекции, так и подчисточные, съёмные и могут быть изготовлены и установлены опционально.

26.03.2014г. Фото основной платы с установленными модулями АРУ и тракта балансного модулятора.

В качестве УНЧ используется малошумящая микросхема AN5265 с электронной регулировкой громкости, а также функцией Mute, задействованной в режиме передачи. Выходная мощность 2.3 ватта.

Плата усилителя мощности


Плата синтезатора и TFT дисплея с тачскрином


Плата ДПФ трансивера. На плате размещены трёх контурные ДПФ на девять КВ диапазонов. Также на плате смонтированы: УВЧ по приёму 20 dB, аттенюатор 18 dB, предусилитель на передачу с регулировкой выходной мощности и контроля превышения КСВ, дешифратор переключения диапазонов и элементы КСВ метра.

Плата ФНЧ трансивера.

Платы микрофонного компрессора и балансного модулятора


Плата стабилизаторов +12 и +5 вольт

Рабочий вариант корпуса URD-012



С 2019 года доступна новая версия трансивера URD-019DX с улучшенными параметрами.

Одно преобразование с ПЧ 5. 120 мГц
- фильтр основной селекции SSB десятого порядка с прямоугольностью 1. 4 с полосой 2. 4 кГц
- фильтр основной селекции CW шестого порядка с полосой 500 Гц
- переключаемые подчисточные фильтры четвёртого порядка SSB и CW
- отдельный фильтр на передачу восьмого порядка с полосой 2. 5 кГц
- регулируемый NOTCH фильтр
Балансный модулятор выполнен по схеме Elecraft K2 со встроенным голосовым компрессором SSM2165.
Лицевая панель выполнена методом шелкографии.

На данный момент собран и запущен образец ещё одной модификации трансивера URD-016 digi со встроенным одноплатным компьютером Raspberry Pi2 (Pi3)
Идея заключается в следующем. Разместить в чисто аналоговом аппарате небольшой компьютер с 5-ти дюймовым дисплеем, на который можно установить желаемый софт для работы цифровыми видами, отображения панорамы и т.п.
При этом трансивер и компьютер могут работать как независимо друг от друга, так и совместно, сопрягаясь через СОМ порты.
Компьютер может подключаться к сети интернет как через проводную линию, так и Wi-Fi.
В качестве устройства для работы панорамы и второго обзорного приёмника используется RTL SDR приёмник с UP конвертером размером меньше пачки сигарет, установленный в корпусе трансивера.

При разработке самодельного многодиапазонного KB трансивера ставилась задача создать простой универсальный приемо-передающий тракт, имеющий минимальную коммутацию цепей в режимах приема и передачи и обеспечивающий отличную повторяе-мость, а значит, с минимумом настроечных элементов. Предлагаемая вниманию читателей схема основного тракта рассчитана на начи-нающих радиолюбителей, не имеющих, как правило, сложных и дорогих контрольно-измерительных приборов. Собрать ее можно практически из того, что "лежит под руками". Опытный радиолюбитель может по своему усмотрению добавить в схему необходимые узлы и сделать маленький легкий трансивер для работы в эфире с дачи или в походе.

Схема основного тракта (рис.1) очень проста, логична и легко "читается". Это классический супергетеродин с одним преобразованием частоты.

В режиме приема (RX) сигнал с выхода диапазонных полосовых фильтров (ДПФ) поступает на "классический" кольцевой диодный смеситель . На другой вход смесителя подается сигнал с генератора плавного диапазона (ГПД). С выхода смесителя сигнал промежу-точной частоты (ПЧ) поступает на первый каскад усилителя промежуточной частоты (УПЧ), выполненный на транзисторах VT1 и VT2. Нагрузкой этого каскада является кварцевый фильтр ZQ1, обеспечивающий основную селективность приемника по соседнему каналу. Отфильтрованный сигнал усиливается еще одним каскадом УПЧ на транзисторах VT3 и VT4, который также нагружен на кварцевый фильтр (ZQ2), который является "подчисточным". С выхода этого фильтра сигнал поступает на третий каскад УПЧ на транзисторах VT5 и VT6, а с его выхода - на второй диодный кольцевой смеситель, на который также подается сигнал опорного кварцевого генератора (ОГ), выполненного на транзисторе VT10. На выходе смесителя выделяется сигнал звуковой частоты, который через нормально замкнутые релейные контакты К2.1 поступает на усилитель низкой частоты (УНЧ) на микросхеме LM386. Эта широ-ко распространенная микросхема имеет хорошие усилительные и шумовые характеристики. Выход УНЧ нагружен на переменный резистор R32, который обеспечивает регулировку громкости. ВА1 - компьютерная гарнитура, в которой "динамики" сопротивлением 2x32 Ом включены параллельно. На элементах С28, VD9, VD10, R26, С24 и VT9 выполнена схема автоматической регулировки усиления (АРУ), предложенная Сергеем Беленецким, US5MSQ, в приемнике "Малыш" (спасибо, Сергей!). Несмотря на свою простоту, АРУ довольно эффективна и позволяет весьма комфортно принимать сигналы с уровнями от эфирных шумов до 9 +40 дБ по S-метру.
АРУ начинает срабатывать при силе сигналов 7 баллов и больше. "Давить" более слабые сигналы, на мой взгляд, смысла нет. При выбранном пороге работы АРУ слабые станции легко "читаются" на фоне гораздо более мощных. В S-метре используется усилитель постоянного тока на транзисторе VT11, нагруженный на микроамперметр с током максимального отклонения 200 мкА.
Прежде чем перейти к рассмотрению работы тракта в режиме передачи, отмечу, что все три каскада УПЧ являются реверсивными. Идея реверсивного усилителя была почерпнута из схемы, размещенной на сайте американского радиолюбителя SteVen Weber, KD1JV (http:// kd1jv.). В режиме передачи (ТХ) при нажатии на педаль срабатывают реле К1 - КЗ. Релейными контактами К1.1 реверсируется направление прохождения сигнала в каскадах УПЧ, а через контакты К3.1 напряжение питания подается на микрофонный усилитель (при этом снимается напряжение питания с УНЧ и УПТ S-метра). Сигнал с микрофонного усилителя на транзисторах VT7 и VT8 через релейные контакты К2.1 поступает на кольцевой смеситель на диодах VD5 - VD8, в режиме передачи играющий роль балансного модулятора. С выхода модулятора двухполосный сигнал с подавленной несущей (DSB) проходит через все три каскада УПЧ в "обратном" направлении (т. е. от балансного модулятора к смесителю на диодах VD1 - VD4), и в процессе прохождения сигнала кварцевыми фильтрами ZQ1 и ZQ2 выделяется требуемая боковая полоса, т. е. формируется SSB-сигнал. Дальнейший перенос однополосного сигнала ПЧ на рабочую частоту, находящуюся в одном из любительских KB диапазонов, происходит в кольцевом смесителе на диодах VD1 - VD4, после которого сигнал подается на диапазонные полосовые фильтры. В режимах приема и передачи используется один комплект 50-омных ДПФ. Подавление несущей в балансном модуляторе регулируется подстроечным резистором R20. Возможно (подчеркиваю - возможно!), для более глубокого подавления придется параллельно какому-нибудь из диодов модулятора подключить подстроечный конденсатор емкостью 4 - 25 пФ. Иногда такие конденсаторы на схемах изображают пунктиром. Но при хорошо подобранных диодах необходимости в конденсаторе нет, поэтому на схеме он не изображен.
Несколько слов о самих реверсивных каскадах. Режимы транзисторов устанавливаются автоматически, и при исправных деталях каскады в настройке не нуждаются. При напряжении питания +6 В коэффициент усиления такого каскада составляет 17 - 18дБ, при +9В - +20 дБ, при 12 В - +23 - 24 дБ. При этом за счет глубоких обратных связей каскад работает очень устойчиво, а коэффициент усиления слабо зависит от типа применяемых транзисторов. Первые эксперименты проводились на парах транзисторов КТ315 и КТ361, но, руководствуясь желанием получить в режиме приема максимально достижимые шумовые характеристики тракта, я отдал предпочтение транзисторам КТ368. Транзисторы структуры р-п-р, работающие в режиме передачи, могут быть любыми из серий КТ363, КТ326, КТ3107.
Как видно из схемы, все три каскада идентичны, за исключением каскада на VT5 и VT6, в котором отсутствует конденсатор в эмиттерной цепи транзистора VT5. Это сделано для снижения коэффициента усиления в режиме передачи, что позволяет избежать перегрузки последующих каскадов и смесителя.
Транзистор КП501 в системе АРУ можно заменить импортным 2N7000. В качестве индикатора S-метра хорошо подходит измерительная головка от старого кассетного магнитофона.
Диоды для смесителей желательно подобрать по прямому сопротивлению. Безусловно, наилучшие результаты получатся в том случае, если применить диоды, специально разработанные для смесителей и подобранные в "четверки" (например, КД922АГ). Однако если этих диодов нет, не надо отчаиваться - в схеме будут неплохо работать даже КД521.
Широкополосные трансформаторы Т1, Т2 и Т8 намотаны на кольцах К7х4х2 проницаемостью 600 - 1000НН тремя слегка скрученными проводами (2-3 скрутки на сантиметр) ПЭВ диаметром 0,15 - 0,17 мм и имеют 15 -18 витков. Трансформатор балансного модулятора Т7 должен иметь достаточную индуктивность для сигналов звуковых частот, поэтому его нужно намотать на кольце К10x6x5 проницаемостью не ниже 1000HH такой же скруткой проводов (в один слой) до заполнения кольца. Особое внимание следует обратить на симметричность выполнения обмоток всех трансформаторов - от этого зависит качество балансировки смесителей.
Трансформаторы ТЗ - Т6 намотаны на кольцах К7х4х2 проницаемостью 600 - 1000НН двойным скрученным (2-3 скрутки на сантиметр) проводом ПЭВ диаметром 0,15 - 0,17 мм и имеют 15 -18 витков, включенных согласно-последо-вательно (начало одной обмотки соединяется с концом другой, образуя средний вывод). Катушка L1, используемая для подстройки частоты ОГ, имеет 25 витков провода ПЭЛ-0,1, намотанного на каркасе 05 мм с подстроенным сердечником от СБ9 с резьбой МЗ, и помещена в экран. Реле К1 - КЗ желательно применить малогабаритные (например, РЭС49 или РЭК23). О кварцевых фильтрах: в авторском варианте 1-й ФОС - восьмикристальный, 2-й ("подчисточный") - четырехкристальный. Но это не требование, а скорее, пожелание. В принципе, в схеме можно применять любые фильтры и на любую частоту, доступные радиолюбителю. Это еще одно достоинство примененных реверсивных каскадов, в которых отсутствуют резонансные цепи, требующие настройки. Однако следует иметь в виду, что поскольку в УПЧ используется не самая оптимальная, но зато очень простая и доступная начинающему радиолюбителю простейшая автотрансформаторная схема согласования между усилителями и кварцевыми фильтрами, то единственное требование к кварцевым фильтрам заключается в величине их входного и выходного сопротивлений, которая должна быть в пределах 220 - 330 Ом. Как правило, кварцевые фильтры, изготовленные на распространенных ПАЛовских кварцевых резонаторах на частоту 8,867 МГц, удовлетворяют этому требованию.
С основной платой можно использовать любой ГПД или синтезатор частоты, работающий на соответствующих частотах и формирующий требуемое напряжение выходного сигнала. Не следует подавать на смеситель напряжение более 1,2 - 1,5 В, т. к. это приведет к росту собственных шумов тракта. Тем не менее, если используемый ГПД имеет достаточную мощность, то в первом смесителе можно установить по два последовательно включенных диода в плече. В этом случае можно ожидать некоторого увеличения динамического диапазона (на несколько децибел) в режиме приема, а также можно увеличить уровень выходного сигнала в режиме передачи - до 200 - 250 мВ вместо 100 - 150 мВ со смесителем, в котором установлено по одному диоду в каждом плече.
Диапазонные полосовые фильтры с входным и выходным сопротивлением 50 Ом можно применять любые - как самодельные, так и промышленные. В авторском варианте используются самодельные ДПФ от трансивера RA3AO.
Особо хочу отметить, что в режиме приема следует подобрать оптимальный уровень сигнала с ОГ, ориентируясь на наилучшее соотношение сигнал/шум на выходе тракта. Уровень выходного сигнала ОГ во многом определяется добротностью кварцевого резонатора ZQ3. Оптимальный уровень можно установить подбором емкости конденсатора С20 в пределах 47 - 100 пФ и/или сопротивления резистора R23 (330 - 750 Ом).
Микрофонный усилитель на транзисторах VT7 и VT8 требуется только при использовании динамического микрофона. Если трансивер будет работать с электретным микрофоном, имеющим ЭДС 100 мВ и более, то достаточно установить только эмиттерный повторитель, изготовив его по любой из известных схем.
Реальную чувствительность тракта подсчитать несложно: потери в ДПФ составляют -6 дБ, потери в смесидБ, коэффициент усиления 1-го УПЧ - +20 дБ, потери в 1-м кварцевом фильтре - -6 дБ, коэффициент усиления 2-го УПЧ - +20 дБ, потери во 2-м кварцевом фильтре - -4 дБ, коэффициент усиления 3-го УПЧ - +20 дБ. Итого, до входа детектора (перед конденсатором С11) коэффициент усиления приемного тракта составляет +38 дБ или 80 раз по напряжению. Со входа детектора реальная измеренная чувствительность (при соотношении сигнал/шум 10 дБ) составляет 10 мкВ. Таким образом, предельно достижимая чувствительность с антенного входа может достигать 0,125 мкВ. Это теоретически, а реально - не хуже 0,35 мкВ. И все это благодаря малошумящему УПЧ с его относительно небольшим усилением.
На низких (читай - звуковых) частотах гораздо легче получить большой коэффициент усиления (как, например, в приемниках прямого преобразования). Коэффициент усиления УНЧ на микросхеме LM368 может достигать свыше 70 дБ! Для того чтобы убрать излишек усиления ("белый шум"), установлен подстроенный резистор R29.
Если на базе этого тракта предполагается изготовить трансивер на НЧ диапазоны, то напряжение питания реверсивных каскадов желательно уменьшить до +6 В, заменив интегральный стабилизатор 78L09 на 78L06.
Регулировку усиления по ВЧ лучше всего выполнить на основе плавного аттенюатора (рис.2), который устанавливается перед ДПФ.
Основной тракт можно дополнить телеграфным генератором (рис.3). Его схема практически не отличается от схемы ОГ (за исключением элемента подстройки частоты - вместо индуктивности используется конденсатор, позволяющий "утянуть" частоту генератора "вверх").

C основным приемо-передающим трактом используется транзисторный усилитель мощности (рис.4) с выходной мощностью около 30 Вт.

В авторском варианте усилитель выполнен "на пятачках" на плате из фольгированного стеклотекстолита, установленной на радиаторе, на котором закреплены транзисторы VT2 (непосредственно) и VT3-VT5 (через изоляционные прокладки). Для повышения устойчивости работы каскадов на транзисторах IRF510 на вывод затвора каждого транзистора надето кольцо К7-4-2 М1000НН.
Настройку усилителя начинают с установки токов покоя транзисторов(без подачи ВЧ сигнала): VT1 - 34 mA (подбором сопротивления резистора R4), VT2 - 150 mA (подбором сопротивления резистора R9), VT3 - 250 mA (подбором сопротивления резистора R13), VT4 и VT5 - примерно по 200 mA (c помощью подстроечных резисторов R16 и R17).Конденсатор С6 - очень важный элемент схемы, во многом определяющий сквозную АЧХ усилителя мощности. Настройку АЧХ следует начинать с диапазона 28 Мгц подбором емкости конденсатора С6, подав на вход усилителя ВЧ напряжение 100-120 мВэфф. При этом выход усилителя должен быть подключен к 50-омному эквиваленту антенны через предварительно настроенные фильтры нижних частот. Допустим что выходное напряжение в диапазоне 28 Мгц составило 40 В эфф. Далее переходим к более низкочастотным диапазонам и подбором емкости конденсатора С6 добиваемся выходного напряжения около 40 В эфф.. А можно сразу установить С6 емкость 1000 пФ и сравнить выходную мощность в диапазонах 3,6 и 28 Мгц. Возможно, усилитель будет иметь вполне "приличную" АЧХ. Если же выровнять АЧХ подбором емкости конденсатора С6 не удается, придется установить параллельно первичным обмоткам трансформаторов Т2 и Т3 конденсаторы (на схеме отсутствуют, т. к. необходимости в них может и не быть) емкостью 30-50 пФ.
В заключении отмечу, что за год работы на трансивере, выполненном на базе приведенных схем, сработано свыше 160 стран по списку DXCC и получено более 210 дипломов по программе EPC.

Игорь Августовский (RV3LE)

Монтажная схема основной платы TRX «Клопик» (плата 2.0).

На данную плату возможна установка собранных кварцевых фильтров «КФ-8м» и «ПКФ-4м».


Усилитель мощности трансивера "RadioN" с номинальной мощностью 10 Вт

Усилитель мощности разработан с использованием схемотехнических решений трансивера SW-2013 и т.д. ;) автором которого является Александр Шатун (UR3LMZ). Усилитель разработан для КВ трансивера "RadioN" выполненного на базе реверсивного тракта Сергея Беленецкого (US5MSQ) .






Теперь со всей уверенностью можно заявить, что линейка печатных плат для изготовления трансивера "RadioN" полная:) и начинающим радиолюбителям можно приступать к "строительству" приёмопередатчика. Для многих это будет не первый трансивер изготовленный самостоятельно, но я всё же надеюсь, что процесс сборки, настройки и работы в эфире на этом трансивере оставит в Вашей памяти только хорошие впечатления;) и будут слышны только положительные отзывы. Трансивер изначально планировался для работы SSB и CW на трёх радиолюбительских диапазонах 160, 80 и 40 м, но потом пошли модификации 40, 80 и 20 м, а так же вариации с диапазоном 30 м:)

Ранее были разработаны и уже предлагались в качестве наборов для сборки, собранных плат и чистых печатных плат:
- основная плата (реверсивный тракт с ПЧ=500 кГц и электромеханическим фильтром);
- плата диапазонных полосовых фильтров (ПДФ);
- плата генератора плавного диапазона (ГПД/VFO);

- плата фильтров низкой частоты (ФНЧ) с измерителем КСВ;
- плата универсального синтезатора частот СВ, ДВ, КВ диапазонов под названием "Ёжик";
- плата адаптации/сопряжения универсального синтезатора и реверсивного тракта.
Схемы, описания, фотографии и пр. информация содержится в соответствующих разделах у меня на сайте. Завершает линейку блоков/узлов/плат усилитель мощности на транзисторах IRF510 или RD16HHF1. Причём печатная плата разработана с возможностью установки обоих типов транзисторов. Плата усилителя выполнена односторонней с маской и маркировкой с обеих сторон.

  • размеры печатной платы - 110х50 мм;
  • напряжение питания усилителя мощности - 12...13,8 В постоянного тока;
  • номинальная выходная мощность в диапазоне частот 1,8...15 МГц с транзисторами RD10HHF1- 10 Вт;
  • максимальная выходная мощность - не менее 15 Вт;
  • номинальная выходная мощность в диапазоне частот 1,8...15 МГц с транзисторами IRF510- от 10 Вт на НЧ диапазонах до 3-4 Вт на 20 м;
  • потребляемый ток - до 3 А;
  • чувствительность: варианта на транзисторах IRF510 - 0,15 Вэфф, варианта на транзисторах RD16HHF1 - 0,30 Вэфф
  • управляющий сигнал RX/TX - постоянное напряжение +9 В.

Схема усилителя мощности с выходными транзисторами IRF510 приведена и ниже:


Схема усилителя мощности с выходными транзисторами RD16HHF1 приведена и ниже:


Есть небольшие различия в схемах, думаю они заметны:) Как я уже писал, печатная плата усилителя мощности рассчитана для установки обоих типов транзисторов. IRF510 отдают свои 10 Вт на низкочастотных диапазонах и уже на 20 м наблюдается завал до 2-3 Вт выходной мощности, а усилитель на RD16HHF1 выдаёт ровненько свои 10 Вт на всех диапазонах. Для RD16HHF1 критично наличие на выходе ФНЧ указанного на схеме. Основная часть радиокомпонентов в усилителе для поверхностного монтажа, кроме моточных изделий, реле и разъёмов. Силовые транзисторы устанавливаются под платой и крепятся к теплоотводу. В данном случае предлагается алюминиевый ребристый радиатор 122х50х37 мм с площадью поверхности 500 см кв. в котором необходимо будет просверлить шесть отверстий и нарезать в них резьбу М3. Отверстия необходимы для крепления самой платы и выходных транзисторов. При изготовлении усилителя на транзисторах RD16HHF1, транзисторы крепятся непосредственно к радиатору с использованием теплопроводящей пасты КПТ, а для варианта на IRF510 нужно не забыть, что транзисторы кроме всего прочего нужно изолировать от корпуса и друг от друга, т.е. для крепления нужно обязательно применять изолирующие прокладки и втулки! Также в варианте на IRF510 ФНЧ на катушках L1,L2 не устанавливается (заменяется проволочной перемычкой). Для исключения перегрева выходных транзисторов при длительно работе на передачу эффективная площадь рассеяния радиатора (или металлического шасси/корпуса) должна быть не менее 250 кв.см для RD16HHF1 и не менее 400 кв.см. для IRF510.

Сборка и настройка:

Настройка собранного без ошибок УМ проста и заключается в установке тока покоя транзисторов выходного каскада и сопряжения (регулировке) усиления тракта ПЧ основной платы в составе TRX "RadioN". Перед первым включением УМ нужно убрать перемычку J1, поставить подстроечные сопротивления R19,R20 в положение минимума (отмечено на плате), и через амперметр запитать от источника питания +13,5…+14 В (желательно, на всякий случай, с установленной защитой от перегрузки на уровне 3,5…4 А). Нагружаем выход УМ (непосредственно или через подключённую плату ФНЧ, скоммутированную на диапазон 80 м!) эквивалентом нагрузки мощностью рассеяния не менее 10 Вт. Подав на плату напряжение +9V TX плавной регулировкой R19 выставляем ток покоя верхнего транзистора VT6 на уровне 250 мА, с учётом тока потребления реле К1 порядка 12-16 мА, амперметр должен показать 260-265 мА, затем плавной регулировкой R20 выставляем ток покоя нижнего транзистора VT7 на уровне 250 мА, амперметр должен показать уже суммарный ток покоя выходного каскада (обоих транзисторов), т.е. 510-515 мА. Подключив миллиамперметр к разъёму J1 можно проконтролировать суммарный ток покоя предоконечного каскада VT4,VT5. Ставим джампер-перемычку J1 на место.
На вход УМ подключаем источник сигнала частотой 3,6 МГц (выход ТХ платы ПДФ или ГСС при автономной настройке). Включаем режим телеграфа и нажав ключ подстроечным резистором R11 основной платы добиваемся выходного напряжения 22,4 Вэфф в нагрузке 50(51) Ом, т.е. номинальной выходной мощности 10 Вт. При наличии ВЧ вольтметра или осциллографа с малоёмкостным щупом можно проконтролировать покаскадное прохождение сигнала, ориентировочные значения которого в контрольных точках показано на принципиальных схемах.
Монтаж УМ выполняется на односторонней печатной плате размерами 110х50 мм с маской и маркировкой. Намоточные данные трансформаторов и катушек индуктивности приведены на принципиальной схеме.



Стоимость печатной платы усилителя мощности 110х50 мм - 120 грн.

Стоимость набора для сборки усилителя мощности с транзисторами IRF510 - 400 грн.

Стоимость набора для сборки усилителя мощности с транзисторами RD16HHF1 - 820 грн.
Состав набора можно увидеть (радиатор в комплект не входит)
ДОПОЛНИТЕЛЬНО:

Стоимость изолирующего комплекта для одного транзистора (втулка М3, прокладка, винт М3х12, шайба Д3) - 5 грн.


Стоимость одного транзистора RD16HHF1 - 235 грн.
Стоимость одного транзистора IRF510 - 20 грн.
Кольцо ферритовое М2000НМ К7х4х2 - 3 грн.

Стоимость радиатора 122х50х37 мм (без сверловки отверстий и нарезки резьбы) - 120 грн.
Паста теплопроводящая КПТ-8 (баночка 10 г) - 15 грн.
На силиконовой основе. Рабочая температура от -60 до +180 °С


Кольцо ферритовое EPCOS (N87 R12.7x7.9x6.35) - 15 грн.


Видео работы трансивера на 160, 80 и 40 м диапазонах с усилителем на 2хRD16HHF:

Видео измерения мощности на всех КВ диапазонах, но на входе меандр, с усилителем на 2хRD16HHF:

схема межблочных соединений :


Конечно же, стандартно можно применить плату генератора плавного диапазона (ГПД) и цифровую шкалу для "стабилизации" частоты. Схемы и описание ГПД приведены на сайте Но хочется хоть как-то усовершенствовать конструкцию и сделать более современной, что ли;)

Предлагается вашему вниманию не сложный трансивер. Похожих схем много опубликовано. Поэтому здесь вы увидите много знакомых узлов доведенных до рабочего состояния. А что же нового? Спросите вы. По этому немного комментариев, истории создания, обоснования применения тех или иных узлов.
А началось все с "YES-98". При всем моем уважении к автору. Дело не в нём. Микросхема К174ХА10 имеет по ТУ динамический диапазон 45дБ. Примерно так он и звучит. Корпус был изготовлен лет 10 тому назад под другой трансивер. Хороших микросхем не нашлось в наличии. Пришлось делать на дискретных элементах из широко доступных деталей. Причём весьма дешевых. Да ещё чтобы работал прилично.
Структура похожа на трансиверы из семейства "RW4LQ","HDK-97" "Роса" и т.п.


Начнем со входа основной платы.
В виду хорошей повторяемости, приличных параметров, возможностью повторить любителем практически любой квалификации, дефицита под рукой элементной базы применена давно известная схема смесителя. Соответственно пришлось применить УРЧ. Возможно применение других смесителей. Имеется большое поле деятельности.
Диплексер, первый УПЧ (реверсивный). Усиление ~20дБ. В комментариях не нуждаются.
Кварцевый фильтр из набора "Кварц - 35". Мой экземпляр имеет Rвх = 240 Ом. Возможно применение других фильтров, при этом придется изменить схему согласования по входу на П-контур.
Особо хочу остановиться на усилителе ПЧ. Схему я, кстати, подобную нигде не видел. Усилитель ПЧ имеет очень малый уровень собственных шумов. При правильной настройке максимум усиления будет при снижении шумов.
Были опробованы схемы на КП327 - Т10,КТ646 - Т9. Результат отрицательный. Отвратительная регулировочная характеристика при регулировке усиления. При уменьшении усиления сначала исчезает полезный сигнал, а потом собственные шумы. Это приводит к окраске шумом даже сильных сигналов. Сквозное проникновение сигнала при большом входном сигнале ~50mv.Считай сосед включился HI! Особенно заметно на НЧ диапазонах. В этом случае поможет только хороший аттенюатор или отключай антенну. Были также опробованы в данной конструкции другие схемы. Один КП327, один КП350, один КТ399А, один КП302 в разных вариантах включения и т.д. Все не подошли по тем или иным параметрам.
Сразу хочу обратить внимание на режим Т10. Напряжение на коллекторе при регулировании усиления меняется от »2V до 0V. Не обращайте внимания. В целом каскад работает без каких либо искажений.
В данной схеме усиление составляет 40дБ при хорошем запасе по перегрузке. В режиме передачи УПЧ используется для самоконтроля CW/SSB. Возможности данного узла гораздо большие. Ограничение в 40дБ наложило одноплатное исполнение. При исполнении отдельным блоком легко довести усиление до 60дБ при том же, практически, уровне собственных шумов. Схема испытывалась. Я её умышленно не привожу. Дабы шаловливые ручки не "улучшили" то что уже сделано. Это будет другой трансивер, с другой концепцией. А хороший конструктор и сам разберется.
Диапазон РРУ со входа УРЧ составляет более 140дБ (Не хватает диапазона измерительного генератора, измерить не чем.). АРУ хорошо работает при скачкообразном изменении входного сигнала от1,5mkV до 0,5V. Слышен только легкий щелчок. Дело в том что АРУ по НЧ. Все тонкости на схеме, в режиме работы А3. АРУ по ВЧ в паре с интегратором на Т12, Т13 работает превосходно. Но в одноплатном исполнении из за взаимного влияния элементов без ухудшения характеристик тракта ПЧ очень тяжело реализуемо. По этой же причине на отдельную плату вынесен генератор опорной частоты. Хотя и без экрана. Этого оказалось вполне достаточно.
Детектор SSB высокого уровня на диодах КД522А 8шт. Выбран не случайно. Достаточно легко достигается хорошее согласование с УНЧ по шумам.
В качестве НЧ применена микросхема КА2212. Работает без радиатора при Pвых 0,7Вт. От ТДА1013 пришлось отказаться. Очень сильно шумит. В ТВ может она и годится но не в трансивер. Схема включения несколько изменена. Добавлен С66. Монтируется с обратной стороны платы. Общий вывод припаивается с двух сторон платы!!!
Переключатель RX/TX собран на реле. И без того низкое питание да еще потери на электронном коммутаторе.
Остальные узлы в комментариях не нуждаются. Все можно найти в описании других конструкций и литературе.
Весьма скромные основные характеристики:
- диапазоны 1.8, 3.5, 7, 14, 21, 28 МГц
- чувствительность приемного тракта в режиме SSB при отношении с/ш 12 дБ 0.2 мкВ
- входное сопротивление 50...60 Ом
- диапазон РРУ >140дБ
- диапазон АРУ >100дБ
- избирательность при расстройке ±10кГц 85дБ
- выходное сопротивление 50...60 Ом
- питание однополярное + 13.5 В
- потребляемый ток при приеме около 0.2 А
- габариты
ширина 185 мм
высота 60 мм
глубина (без выступающих ручек и пр.) 195 мм

Отдельные параметры (в частности избирательность по соседнему каналу) получены в результате компоновки узлов, разводки проводников печатной платы!!! На схеме, по чьему то мнению, отсутствуют отдельные детали и узлы. Их там не должно быть! Повторяемость 100%.
Печатные платы разведены достаточно просто. Фольга со стороны деталей сохранена. Легко повторяются "лазерно - утюжной" технологией. Можно и руками нарисовать. Обращайте внимание на все мелочи. Печатки в формате Sprint-Layout4 прилагаются.
Не много об остальных узлах трансивера.
Узлы применялись из соображения "что влезет в этот корпус".
Цифровая шкала Аникина Дмитрия (RW4LED) Удобный для чтения вывод частоты на индикатор. Переключатель диапазонов. Я добавил формирователь на 1533ЛА3 по входу.
ГПД от YES-98 был уже готов.
Полосовые фильтры двухконтурные. Если позволят габариты, желательно поставить что нибудь получше.
УМ - дело вашей фантазии и возможностей. Монтируется на задней стенке радиаторе. Схема аналогична RA4HDK. Только транзисторы другие.
Весь конструктив виден на подборке фото. На отдельных фото видна основная плата с трактом ПЧ аналогичным YES-2002 и УНЧ на ТДА1013. Транзистор КТ3102 можно заменить любым из серий КТ315, КТ312, КТ645, SS9014 , C945 . Вместо диода КД522А подойдёт любой из серий КД521, 1N914, 1N4148 , 1SS176S.
Весь материал выложен по просьбам радиолюбителей слышавших работу этого аппарата. Четыре транзистора и микросхема на прием обеспечивают общее усиление около 120дБ. При сравнении по качеству приема с ALINCO - DX-70 предпочтение отдавалось BIZON-06 . Эфир имеет естественное звучание. Станции легко разбираются при работе на одной частоте с разными уровнями сигнала. По чувствительности они примерно одинаковы. ALINCO - DX-70 с включенным УРЧ - 0,16mkV.
Обращаю ваше внимание на качество изготовления трансформаторов на основной плате. Это небольшая плата за качество работы.
Схема в формате Splan6.0 BIZON06_spl.zip
Печатки в форате Sprint-Layout4 Bizon06.zip
Фото и схема в формате DjVu Solo 3.0 m_board_06.zip


Повторены практически все конструкции аналогичных уз-лов, публикации которых встречались в доступной радиолюбительской ли-тературе - поэтому, появился “творческий зуд” создать “чего-нибудь”, собрав “до кучи” наиболее оптимальные варианты. Главные требования - максимально возможная простота без ухудшения параметров, отсутствие уникальных ра-диоэлементов, повторяемость, возможность изготовления в домашних ус-ловиях. За основу была взята схемотехника наиболее отработанных и непло-хих по характеристикам трансиверов RA3AO и Урал 84М.

  • основной платы.
  • основной платы.

Был выбран вариант “одноплатной” конструкции, как наиболее удобной с точки зрения изготовления печатных плат и простоты монтажа в трансивере, хотя такое построение и имеет недостатки при получении мак-симально возможной чувствительности и несовместимости некоторых уз-лов. Как показал опыт, после повторения более десятка таких плат, харак-теристики трансивера получаются довольно высокие. При применении опи-сываемого синтезатора двухсигнальная избирательность при подаче сигна-лов с разносом 8 кГц на диапазоне 40м -94-96дБ. Чувствительность без УВЧ не хуже 0,ЗмкВ. Измерения проводились у UT5TC при очередной моей поездке на хамфест в Харьков. Использовался прибор «Динамика» - это именно та авторская конструкция «измерителя динамики», которую В. Скрыпник привозил на выставку в Москву и при описании конструкции прибора приводил таблицу «намеренной динамики» трансиверов, которые экспонировались. Трансивер с такой основной платой и самодельным синтезатором, в той когорте лучших образцов советской любительской техники был бы далеко не последним. Следует отметить, что при изготовлении этого TRX не ста-вилась задача получения максимально достижимых “цифир”.

Небольшое лирическое отступление, возможно немного объясняющее позицию автора к построению радиолюбительского самодельного трансивера.

Несколько ра-нее проводил «обширные изыскания» в направлении получения макси-мально достижимого динамического диапазона приемника. В качестве гетеродина (для получения минимально возможного “шума”) были пере-пробованы более десятка вариантов от генераторов на полевых, биполярных транзисторах до нувисторов, от катушки с «воженным серебром» до коаксиалов и кварцев с «уводом», генерирующих как на основной частоте, так и на частотах более 200МГц с последующим делением. В итоге был создан некий «монстр» с чувствительностью порядка 0,2мкВ и двухсигнальной из-бирательностью -104дБ. С чувством глубокого удовлетворения в течение нескольких лет вращались ручки этого трансивера, но «подул ветер пере-мен» и настали новые времена. Начала появляться «буржуйская техника» и у советских радиолюбителей. Незамедлительно последовали споры - «что лучше, что хуже», с чаще всего встречающимся выводом - «за что боро-лись то»? После того, как удалось покрутить ручки некоторых экземпляр-чиков фирм ICOM, KENWOOD и YAESU, побывать на радиолюбительской выставке «там за бугром», немного «поковырять» эту технику - чувство глу-бокой удовлетворенности стало рассеиваться. Возникло два основных воп-роса - зачем советским радиолюбителям максимально достижимая динами-ка и кому выгодно, чтобы частота в трансивере постоянно «куда-то стреми-лась» и невозможно было спокойно работать цифровыми видами связи. И еще одна не совсем ясная ситуация - отсутствие популярности 50-100Вт транзисторных ШПУ, к которым уже давно пришли все фирмы, занимаю-щиеся выпуском подобной техники. У нас - или ламповый выходной каскад: соответственно - ручки постоянно крути-верти (в эфире по этому поводу постоянное длительное “А”, пока все стрелки не упрутся вправо), отсут-ствие режима “кроссбенд”, “сплит” или маломощный транзисторный ШПУ на транзисторах совсем не предназначенных для работы на частотах 1,5-30 МГц. Второй случай вынуждает работать с постоянно включенным (часто шумящим) дополнительным «громкоговорителем» (читай - ламповым УМом), а так как транзисторы в ШПУ чаще всего разработаны для работы на частотах более 50-100МГц, то окружающие телезрители нашего брата «сильно любят» и при каждой встрече «снимают шляпу». В итоге моё отношение ко всяким «супер-динамикам», «супер-малошумящим» ГПД с делениями и остальным «супер-пупер» растаяло и появилось стойкое убеждение в том, что в первую очередь трансивер должен быть удобным и стабильным в пользовании. И только потом следует вспоминать о «динамике».

Один из определяющих факторов при выборе схемотехники TRX - это повторяемость конструкции и доступность элементной базы. В предла-гаемом варианте основной платы отсутствуют какие-либо дефицитные или незаменимые элементы. Возможная чувствительность с входа платы, кото-рую можно достичь без тщательной отладки каждого каскада 0,2-0,3мкВ. Чувствительность, которую удалось получить при тщательном подборе эле-ментов и настройке не хуже 0,1мкВ. Данные здесь приблизительные, так как нет в распоряжении прецизионного прибора для измерения малых значений чувствительности. Измерения проводились с помощью калиброванного кварцевого генератора с питанием от батареек и ступенчатого аттенюатора. Те радисты, которые действительно пытались измерять «чутье» лучше 0,5мкВ, знают насколько это сложная задача без соответствующих приборов. Максимальная двухсигнальная избира-тельность, которую удалось достичь при подборе элементов - 98дБ. Эти значения зависят от многих составляющих, например качества диодов в смесителе, их подбора, качества отладки и типа примененного синтезатора, затухания вносимого кварцевым фильтром и его согласовании и т.д.

Основную плату можно разбить на узлы:

  • Отключаемый широкополосный УВЧ;
  • Обратимый смеситель;
  • Пас-сивный диплексер;
  • Согласующий обратимый каскад;
  • Основной квар-цевый фильтр;
  • Линейка УПЧ;
  • Детектор, УНЧ и узел АРУ;
  • Опорный кварцевый генератор.

Входного УВЧ, смесителя и диплексера на основной плате.

Усилитель высокой частоты (VT5) с отрицательной цепью обратной связи Х-типа (6). Один из лучших транзисторов для усилителя КТ939А. В плату был заложен КТ606А, как более дешевый и распространенный. Не нужно сильно переживать о том, что УВЧ ухудшит динамический диапазон RX. Во-первых, УВЧ отключаемый, при надобности его можно всегда вык-лючить, во-вторых, включение его обычно требуется только на самых тихих диапазонах во время слабого прохождения, когда все станции слышны с не-большим уровнем и вряд ли какая-либо из станций «перегрузит» этот кас-кад. Настройка каскада зависит от потреб-ности пользователя. В зависимости от типа транзистора и его режима, можно обеспечить или максимально возможную чувствительность или мини-мальное воздействие этого каскада на верхнюю “планку” динамического диапазона.

Схемотехника смесителя за-имствована из (4). Основные преимущества этого варианта - обратимость, максимально возможный динамический диапазон (Дбл до 140дБ) при не-большом уровне гетеродина (1.4В). Конечно, по количеству деталей он сложнее и дороже обычно применяемых радиолюбителями смесителей. Но не нужно забывать, что этот узел определяет качество работы всего прием-ника и экономия на нем просто бессмысленна. От тщательности настройки смесителя зависит и то, как приемная часть будет воспринимать эфир, что можно будет там услышать и то, сколько «мусора» будет выдано на переда-чу, насколько сложными придется делать полосовые фильтры, дабы была возможность работать во время телевизионного приема соседями. Часть де-лителя D1 пришлось установить непосредственно у смесителя, чтобы обеспечить «противофазность» сигналов непосредственно на входе плеч VT1,VT2 и VT3,VT4. Смеситель работоспособен с различными типами диодов. Мож-но предположить, что наилучшими будут диоды типа Шоттки. Из всего оте-чественного перечня доступны лишь КД922. Переход на КД512, КД514 сколько-нибудь заметного ухудшения параметров не вызывает, но это при условии подбора диодов.

Для согласования смесителя с пос-ледующими каскадами в этой плате применен обычный “классический” диплексер L1,L2,C7,C8. В принципе, можно этот узел и не ус-танавливать. Неплохое согласование можно получить за счет подбора режи-ма VT15 КП903. Применение диплексера позволяет получить максимально возможную чувствительность только при применении высокодобротных катушек, если и не избавиться полностью, то значи-тельно понизить уровень пораженных частот. Двунаправленный каскад VT15 должен иметь минимально возможный коэффициент шума, не ухуд-шать динамический диапазон смесителя и компенсировать затухание вно-симое смесителем и ДПФами. Многочисленное применение этого каскада показало его эффективную работу и высокие характеристики. Наиболее распространенный и качественный для этого каскада транзистор типа КП903А. Можно применять КП307, КП303, КП302 с максимальным значе-нием крутизны. Далее сигнал через трансформатор Т3 поступает на кварце-вый фильтр ZQ1. Подробное описание фильтров ниже по тексту. В качестве ZQ1 применен лестничный фильтр. Фильтр согласуется с трактом ПЧ через резонансный контур L3. Транзистор VT7 включается при работе на передачу. По второму затвору происходит регулировка мощности. Линейка УПЧ собрана на транзисторах КП327. Схемотехника заимствована у RA3AO. На мой взгляд - это один из лучших вариантов такого тракта. Здесь можно использовать двух-затворные полевые транзисторы и других типов. Наилучшими (из тех, которые удалось проверить) оказались BF980, импортные транзисторы других типов не проверялись из-за их отсутствия на момент отработки конструкции. Для регулирования усиления использовано свойство насыще-ния проходных характеристик “полевиков” по первому затвору при фикси-рованном и малом напряжении на втором затворе. Этот способ обес-печивает существенно более линейную характеристику при меньших иска-жениях сигнала, чем традиционный, по второму затвору (2). Для глубокой регулировочной характеристики применено четыре каскада. Излишнее усиление убирается путем шунтирования контуров ПЧ резисторами R38 и R46. Следует выбрать для VT8 транзистор с минимальным коэффициентом шума. VT9, VT10, VT11 можно заменить на КП350. Преиму-щество КП327 перед КП350 и КП306 в Кш, они не боятся статики (до 15V) и не имеют покрытия из желтого металла.

опорного генератора, тракта ПЧ на основной плате.

Детектор - пассивный ключевой на транзисторе VT12. Сопротив-ление канала этого транзистора периодически изменяется под воздействи-ем на затвор напряжения с близкой к прямоугольной форме частоты Fоп. Сигнал ЗЧ с выхода детектора фильтруется цепью R61, R62, C52, C51. По-лоса сигнала ограничивается снизу частотой около 200Гц и сверху частотой около 3кГц (2). Наверное - это единственный узел на этой плате, который немного "портит жизнь". Точнее не он, а опорный генератор. Уровень ВЧ напряжения для работы детектора достаточно высокий и в случае неудачной ПЧ можно получить пару "лишних поражёнок". Так же, как и у автора (2) применена микросхема К157УД2 в качес-тве предварительного УНЧ и усилителя - выпрямителя АРУ. Вместо нее мо-жно применить два операционных усилителя. Ограничение полосы пропус-кания сверху можно регулировать цепочкой R63, С58. К выходу предвари-тельного УЗЧ подключен вход усилителя АРУ D1.1A. Транзистор VT13 мо-жет служить для различных целей, он может включать или выключать цепи АРУ по желанию оператора, если такой режим потребуется. Здесь этот ключ используется для блокировки АРУ во время передачи, чтобы не искажались показания S-метра, который в этом режиме показывает выходную мощность передатчика.

АРУ и УНЧ на основной плате.

Усилитель-выпрямитель АРУ остался без изменения. В автор-ском варианте наблюдалось “дребезжание” АРУ, поэтому изменены вре-менные характеристики “быстрой” цепочки. Емкость С74 потребовалось увеличить до 0,047-0,1mF. В цепь регулировки усиления по ПЧ через диоды VD19 и VD18 можно подавать напряжение с ручных регуляторов, например - “регулировка усиления ПЧ”, “уровень самопрослушивания”. В качестве оконечного УНЧ использована микросхема К174УН14. Схема включения типовая. Полоса пропускания сверху определяется це-почкой С68, R80. Выход УНЧ можно нагружать на динамик или через дели-тель R84, R85 на головные телефоны. Коэффициент усиления можно регу-лировать резистором R17.

Поддавшись стремлению обеспечить “одноплатность” всей конструкции трансивера, решено на основной плате развести опорный гете-родин . Это, конечно же, усложнило ситуацию с “пораженными точками”. Некоторых из них можно было бы избежать совсем, если бы опорный гете-родин был выполнен в отдельном экранированном отсеке. При удачной ПЧ количество точек не превышает 3...5 на все девять диапазонов. Возможно от них избавиться практически совсем, если повозиться с дополнительными заземлениями шины питания микросхемы и металлизации вокруг этого узла. При разводке платы были приняты все возможные меры для сведения к минимуму наводки от опорника - этот узел расположен компактно в самом углу платы, оставлено максимальное количество фольги "земли" вокруг него с обеих сторон платы, со стороны установки элементов можно накрыть его экранирующей коробочкой из лужёной жести, дорожки питания можно перерезать и вводить дополнительные развязывающие и фильтрующие элементы по питанию, место на плате для них оставлено. Как показал опыт повторения - основное излучение дают дросселя, которые служат для сдвига частоты. Нужно стремиться к получению их минимальной индуктивности. Т.к. на неработающей индуктивности более 20-30мкГн может развиваться ВЧ напряжение более 15В.

Настройка платы - типовая, она неоднократно описана в радиолю-бительской литературе. Номиналы элементов R1 и С2 зависят от того, ка-кой узел использован в качестве гетеродина. Если это синтеза-тор, то R1 = 470...68Ом, С2 может иметь номинал от 68пФ до 10нф. Качество согласования заметно на слух по минимальному количеству “шумовых точек” от синтезатора. Элементы LI, L2, С7, С8 настраивают в резонанс на частоту ПЧ. Резистор R19 может иметь номинал 50...200Ом. Качество согласования этого узла определяет общее уменьшение уровня “пораженок” и небольшое увеличение чувствительности. Согласования ZQ1 добиваются резисторами R22, R26, Rф и подбором количества витков Lcb. Подчисточный фильтр ZQ2 согласуют резисторами R52 и R54. Общее усиление тракта ПЧ можно подобрать при помощи R28, R38, R46. Резисторы R39, R47, R53, R60 влияют на Кус и определяют качество работы АРУ покаскадно.

Об изготовлении трансформатора Т1

Были опробованы ферриты проницаемостью 400...2000, диаметр колец - 7...12мм, скрутка проводов и без скрутки. Вывод - все работает. Главное требование - аккуратность изготовления, отсутствие замыкания обмотки на феррит и обязательная симметрия плеч. Диоды в смесителе следует подобрать хотя бы по сопротивлению открытого перехода и емкости. Транзисторы VT1, VT2; VT3, VT4 необходи-мо подобрать как комплиментарные пары. Или хотя бы пары однотипных транзисторов, т.к. сложно найти КТ368 и 363 с одинаковым Кус. Как правило у КТ368 Кус. намного выше чем у КТ363. В эмиттере VT5 номиналы R86 и С9 в цепочке подбираются. Они зависят от типа транзистора. Для КТ606 R86 в пределах 68... 120Ом, а С9 следует настроить по максимуму усиления на 28 МГц (обычно 1нФ), с помощью R87 можно подобрать ток через тран-зистор, например по максимальной чувствительности. Транзисторы КП327 припаиваются снизу платы.

Loading...Loading...